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The motion of a pendulum, the point of suspension of which is subject to vertical harmonic oscillations of arbitrary frequency 
and amplitude, is considered. A complete rigorous solution of the non-linear problem of the stability of the relative positions 
of equilibrium of the penduhim along the vertical is given. 

Considerable attention has been given to the problem of the stability of the equilibrium of a pendulum 
when its point of suspension is subjected to harmonic oscillations. However, this problem has only been 
solved completely using the linearized equations of perturbed motion (see, for example, [1-3]). 
A rigorous solution of the problem of the stability of the normal position of equilibrium of the pendulum 
has been given in [4], but only for small amplitudes of oscillation of the point of suspension. A rigorous 
sufficient condition for the instability of the inverted position of the pendulum was obtained in [5]. 
A non-rigorous analysis of the non-linear problem of the stability of an inverted pendulum was carried 
out in [6, 7]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Suppose the pendulum is regarded as an absolutely solid weightless rod of length l, rotating around 
one of its ends and having a point mass m at its other end. All the results obtained below can easily be 
extended to the case of a physical pendulum; only the value of l needs to be changed to its reduced 
length, equal to r2d -1, where r is the radius of inertia and d is the distance from the centre of gravity to 
the point of suspension. The point of suspension 0 of the pendulum is subjected to harmonic oscillations 
along the vertical of amplitude a and frequency to: z0 = a cos ~ ,  where z0 is the displacement of the 
point of suspension from a certain fixed position 0 (Fig. 1). 

The equation of motion has the form 

/p+(tx+~cos~)sinq~=0, ¢x=gl(¢o2l), ~=all (1.1) 

where 9 is the angle: of deflection of the pendulum from the vertical, and the dots denote differentiation 
with respect to dimensionless time x = cot. 

Equation (1.1) has particular solutions tp = 0 and qu = g, corresponding to positions of relative 
equilibrium of the pendulum along the vertical. When tp = 0 the point of suspension lies above the 
centre of gravity, and when q~ = g it lies below the centre of gravity. Following [8], we will call the first 
position the normal position and the second position the inverted position of the pendulum. 

The purpose of the present paper is to obtain a rigorous solution of the problem of the Lyapunov 
stability of these positions of the pendulum for all possible values of the parameters a and l~- 

Assuming tp = q, ~p = p, the equations of the perturbed motion for the case of the normal position 
of the pendulum can be written in the Hamlltonian form 

dq/dx = ~)H/~)p, dp/dx = - aH/aq (1.2) 

H = ~p2 _ (oc + l~ cos x)cosq (1.3) 
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Fig. 1. 

Similarly, putting q~ = g + q,/~ = p, we obtain the Hamiltonians of the equation of perturbed motion 
for the case of the inverted pendulum. The Hamiltonian corresponding to it reduces to Hamiltonian 
(1.3) when 'c is replaced by x + n and a is replaced by -tx. 

Hence, when solving the problem of the stability of the positions of relative equilibrium of 
the pendulum along the vertical we will consider the stability of the solution q = p = 0 of Eqs (1.2), 
assuming that the parameters Qt and I~ take any values from the half-plane --~ < a < ~, 13 I> 0 in 
the Hamilton function (1.3). As a result of an investigation this half-plane can be split into regions of 
stability and instability. Those of these were a I> 0, 13 I> 0 will be regions of stability and instability of 
the normal position of equilibrium of the pendulum. The regions in which t~ ~< 0, 13 t> 0, after mirror 
reflection in the axis o~ = 0, give the regions of stability and instability of the inverted position of the 
pendulum. 

2. THE L I N E A R  E Q U A T I O N S  OF P E R T U R B E D  M O T I O N  AND THE 
S T A B I L I T Y  IN T H E  F I R S T  A P P R O X I M A T I O N  

In the neighbourhood of the point q = p = 0 the Hamilton function (1.3) can be represented in the 
form of a converging series in powers of q and p 

H = 1~ p2 + ~ (~ + ~ cos'l:)q 2 - 1 / 24(tx + ~ cos "c)q 4 +... (2.1) 

The term in (2.1) which is independent of q andp  is omitted. 
The system of equations (1.2), linearized in the neighbourhood of the point q = p = 0, is equivalent 

to the Mathieu equation 

+ (~ + 13 cos x)q = 0 (2.2) 

There is an extensive literature devoted to investigating this equation. The results and a fairly complete 
bibliography can be found in [1-3]. We will briefly present some information which will be needed 
below. 

Suppose X(x) is the fundamental matrix of the solutions of the linearized system (1.2)which satisfies 
the condition X(0) = E, where E is the second-order unit matrix. The elementsxn(x) andx12(x) of the 
first row of this matrix satisfy Eq. (2.2), while the elements of the second row are obtained from them 
by differentiation with respect to x: x21 = ±n, x22 = ±12. The diagonal elements Xn and x12 are even 
functions of x, while x12 and x21 are odd functions of x. 

In the characteristic equation of the linearized system (1.2) 
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p2 _ 2Ap + 1 = 0 (2 .3)  

we haveA = Xn(27~) = x22(2n). 
In Fig. 2 we show regions of stability and instability of Eq. (2.2) in the half-plane --** < ct < 0% 13 I> 

0. The regions of instability (regions of parametric resonance) are shown hatched. In these regions the 
modulus of one of the roots of Eq. (2.3) is greater than unity. Consequently, by Lyapunov's theorem 
on stability in the first approximation [9], instability occurs here not only for the linear equation (2.2) 
but also for the complete non-linear system of equations of perturbed motion (1.2). In the non-hatched 
part of  Fig. 2 the conditions of stability are satisfied in the linear approximation. Here the roots of 
Eq. (2.3) are complex-conjugate and have moduli equal to unity. Then 

A = cos2rc~., xl2(2g)x21(2g) = -s in  2 2nL < 0 

where __.i2L are characteristic indices (i is the square root of -1  and 7L > 0). 
The sets of region of instability and regions of stability in the linear approximation are denumerable. 

We will denote by gn (n = 1, 2, . . .) the region of stability which, when [3 ---> 0, transfers into the 
interval (n - 1)2/4 < tx < n2/4 of the 13 = 0 axis. We will denote the curvilinear boundaries of the 
regions g2m-1 and g~n (m = 1, 2 . . . .  ) by ~2m-2), ~2m-1) and ~s 2m-l), ~s 2m), respectively. The curves of 7(c k) 
and ~k) intersect ozl the 13 = 0 axis at the points (, = k2/4 (k = 1, 2 , . . . ) ,  from which, for small 13, regions 
of  parametric resonance are produced. The boundary curves ~k) and ~k) of these regions have a 
tangency of the order of k - 1 (k = 1, 2 , . . . )  as 13 + 0. 

All the boundary curves intersect the ct = 0 axis and do not terminate in a finite region. For fixed 13 
the regions of stability are wider the larger the value of ~. For large values of 13 the regions of stability 
become very narrow and approach the curves for which the slope of the tangent is equal to -1. 

For values of the parameters t~ and 13 belonging to the boundary curves the roots of Eq. (2.3) 
are equal. On the ~/!0), ~c2k), ~Z~) (k = 1, 2 , . . . )  curves we have first-order resonance (Pl = P2 = 1), while 
on curves ~c 2g-1), ~i 2g-1) (k = 1, 2 , . . . )  we have second-order resonance (Pl = P2 = -1).  Here  the 
elementary dividers of the matrix X(2~) - pE are non-prime for 13 > 0. 

o t/4 g/4 

Fig. 1. 
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We will denote the linearly independent solutions of Mathieu's equation (2.2) on the ~s )  (m = 0, 1, 
2 , . . . )  curves by q~t m) and ~0~ m), and on the ~m) (m = 1, 2 . . . .  ) curves by ~ t  m) and V~ ~). Then 

q0(, m) (x) = c% (x / 2,-213), q~'~)(x) = fern (x / 2,-213), 

~I "> (x) = sere(x/2,-213), ¥~'~(x)= g% (x / 2, -213) 

Here  Cem and Sem are even and odd Mathieu functions of the first kind, while fem and gem are the 
corresponding Mathieu functions of the second kind. The functions.q~m) and ¥ t  m) are 2~-periodic in x 
for even m and 4g-periodic when m is odd. The functions q~m) and ¥~m) are non-periodic and unbounded, 
and approach infinity as the first power of x. Consequently, for values of the parameters a and 13 belonging 
to the boundary curves there will be instability in the linear approximation. 

A rigorous solution of the problem of stability inside regions gn of stability in the linear approximation 
and on the boundary curves requires a consideration of the complete non-linear system of equations 
of perturbed motion (1.2). The corresponding necessary methods and algorithms have already been 
developed (see [10-13]). 

We will prove the following assertion in Sections 3-5. 

Theorem. For values of the parameters tx and 13 lying inside the regions of stability in the linear approxi- 
mation or on the boundaries of ~2k-1), ~sz~) (k = 1, 2, . . .) ,  the solution q = p = 0 of system (1.2) is Lyapunov 
stable, and on the boundaries of ~0), ~2k), ~2k-1) (k = 1, 2 , . . . )  we have instability. 

3. N O R M A L I Z A T I O N  OF T H E  L I N E A R I Z E D  E Q U A T I O N S  
OF P E R T U R B E D  M O T I O N  

According to [10-13], for a rigorous solution of the problem of stability we must first reduce to normal 
form the part of the Hamiltonian of the perturbed motion (2.1) that is quadratic in q andp.  

We will first consider the region gn of stability in the linear approximation. In this case, by a linear 
real 2n-periodic in x canonical change of variables q, p ---) q,, p ,  

q= nit (X)q. + nt2 (~)p., p = n21 (x)q. + n22 (x)p. (3.1) 

the Hamiltonian (2.1) is reduced to the form 

H = 1/~2 ~(q2 + p2,)-l124(oL+13cosx)(nllq. + nl2P.) 4 +06  (3.2) 

where 0 6 is the set of terms of the sixth and higher powers in q.,p. .  
The quantity k in (3.2) is defined non-uniquely by the relation cos 2rc~. = A. The non-uniqueness can 

be eliminated if we use the continuity of the characteristic indices in 13 by noting that when 13 = 0 we 
have k = tx 1/2. We obtain that 

~(2rc) -1arc cos A + n - I for g2n-i (n = 1,2 .... ) 
Z '= [ - (2n) - t a rc  cosA+ n for g2n 

In the change of variables (3.1) we have 

1_/1~ _1 nil (t.ticoskX+visin~.x), hi2 =1(~(-~isin~,X-t-vicos~,x) 
= xt: (2n)sin 27rk > 0 

~t i = sin 2nkxi2 (x), v i = -xl2 (2n)x~l (x)(i = 1, 2) 

(3.3) 

Suppose now that the parameters ~ and 13 belong to the boundary curves. As was pointed out above, 
on these curves one obtains first- or second-order resonance, while the elementary divisors of the matrix 
X(2r 0 - pE are non-simple. For first-order resonance there is a linear, real, canonical, 27r-periodic change 
of variables q,p  ~ q. ,p.  which reduces the Hamiltonian (2.1) to the form 



Equilibrium stability of a pendulum for vertical oscillations of the point of suspension 883 

1 5p,2 _ ~4  ((X + ~eos ~)(n I Iq* + n12P*)4 + 06 (3.4) H 

where the quantity ~i is equal to I or -1, and its specific value is determined during linear normalization. 
The normalizing change of variables 

Ilqpll' = N( x )llq.p. Ir (3.5) 

is specified by the sianplectic matrix N = II no II of the form 

N = X(x)PQ(x) (3.6) 

where 

 :11 0 
and the matrix P and the quantity 5 are defined as follows. If x12(2n) ~ 0 then 5 = sign x12(2~), 
and 

P = i  bO ~-'11' b=((lx'2(2n)l/(2n))½ 

Ifx21(2n) # O, then 8 = - sign x21(2n), and 

11 ° P = , c = ((I x2, (2n)l/(2n)_ ~) 
c 0 

Note that x12(2~)x21(2u) = 0, but simultaneously quantitiesx12(2g) andx21(2u) cannot be zero since 
the elementary divi,~ors of the matrix X(2g) - E are non-prime. 

For second-order resonance the Hamilton function (2.1) is reduced to the form (3.4) using the 4~- 
periodic in x change (3.5) with the matrix N of the form (3.6). When determining the constant ~5 and 
the matrix P in the corresponding formulae, 2~ must be replaced by 4g. 

Later, in Section 5 when performing a non-linear analysis of the problem of stability on the boundary 
curves, the quantity 8 and the element nil(x) of the matrix N will be required. We will consider four 
possible cases. 

1. The curves ¥c (2k) (k = 0, 1, 2 , . . . )  of first-order resonances. These curves are the right boundaries 
of the regions of parametric resonance which, for small 13, starting from the points a = / ~  of the 
[I = 0 axis. On these, we have 

(3.7) 

x2t(2• ) = 0, x,2(2n) = tP~t}(21Z) ,i~(2k)tn~ , /5 = signxl2(2n) 
Y 2  ~ v ]  

(3.8) 

n.  (t) = bx.  (t)  (3.9) 

2. The curves ~/s (~:) (k = 1, 2 . . . .  ) of first-order resonances. These curves are the left boundaries of 
the regions of pararaetric resonance starting from the points tx = k 2 of the 13 = 0 axis. Here 
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v',:k'(x) 

x( )-IIv2 (o) (3.10) • 

iiv 2 ,(0) 

xn(2n) = 0, x2~(2~) = V~2,~(0) , ~ =-signx2~(2~) (3.11) 

nn(x) = - c  xl2(x ) (3.12) 

3. The curves y (2k-1) (k = 1, 2 . . . .  ) of second-order resonances. These curves are the fight boundaries 
of the regions of parametric resonance starting from the points (x = (2k - 1)2/4 of the 13 = 0 axis. 
On these curves the matrix X(t) and the quantities x12(4n), x21(4g), 8, n11('c) are specified by Eqs 
(3.10)-(3.12), in which the functions ¥i (2k) (i = 1, 2) the superscript 2k must be replaced by 2k - 1, and 
2~ must be replaced by 4~. 

4. The curves Tc(2k-1)" (k = 1, 2 , . . . )  of second-order resonances. These are the left boundaries of the 
regions of parametric resonance starting from the points tx = (2k - 1)2/4 of the 13 = 0 axis. Here the 
matrix X(x) and the quantities x12(4~), x21(4n), 5, nn(x) are defined by (3.7)-(3.9) if in the functions 
(pi (2k) (i = 1, 2) the superscript 2k is replaced by 2k - 1 and 2~ is replaced by 4~. 

The quantitiesx12(4n),x12(4g) in cases 1 and 4 andx21(4n),x21(4x) in cases 2 and 3 when 15 > 0 retain 
their sign over the whole corresponding boundary curve. Hence, to obtain the quantity 8 it is sufficient 
to investigate the sign of these quantities for small 15. By using the necessary expansions of the Mathieu 
functions from [2], we obtain that in cases 1--4 considered above when 0 < 13 "~ 1 we have the following 
relations 

rc[3 2. 
>0, 2 ° . x21(2n)- >0  1 °. x12(2n ) ~ 22k_3[(2k)!]2 22k-t[(2k- 1)!] 2 

3 ° . x2~(4n)- 22,_312k_2)q 2 <0, 4 ° . xn(4n)~  22,_~[(2k_1)!] 2 <0  

Consequently, in cases 1 and 3 the quantity 8 is equal to 1, while in cases 2 and 4 we have fi = -1. 

4. N O N - L I N E A R  ANALYSIS OF S T A B I L I T Y  IN THE R E G I O N S  OF 
STABILITY IN THE L I N E A R  A P P R O X I M A T I O N  

In each of the regions of stability in the linear approximation there is one curve on which fourth- 
order resonance occurs (4~ is an integer). In the region gn on this curve we have 4~. = 2n - 1, and 
for small 13 the curve issues from the point o~ = (2n - 1)2/16 of the 13 = 0 axis and extends without limit 
in the direction of increasing values of 15. Fourth-order resonance curves are not shown in Fig. 2. 

Changing to a non-linear analysis of the stability of the solution q = p = 0 of system (1.2), we will 
first consider the non-resonance case when the parameters ct and 13 lie inside the regions g,, of stability 
in the linear approximation without falling on the curves 4~. = 2n - 1 (n = 1, 2 , . . . ) .  Then, by a close 
to identical, real, 2re-periodic in x, analytic in x and y canonical change of variables of the Birkhoff 
transformation type, the Hamiltonian (3.2) can be reduced to the form 

H = l~2~,(x~ +y:)+l//4c2(x2 +y2)2 +06 

where c2 is a constant quantity. If c2 ~ 0, we have stability [10, 11]. 
According to [12], for the Hamilton function (3.2) we have 

1 , 2 2 n  
- - - ~  c2= 32n (ct+13cosx)(n2,+n?2) dx 

(4.1) 

Substituting the functions nil and n12 from (3.3) here and using the fact that the functions IXl(x), Vl(X) 
are solutions of the Mathieu equation (2.2), we obtain, after some reduction, the following expression 
for c2 
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l 21t . 

c , =  32n~¢2 ~[(~t,v,+~ttv,)2+(~t,~t,-v,v,)2+2(~t,~t,+v,9,)2]dx<O (4.2) 

Since c2 # 0, inside all the regions gn (n = 1, 2 . . . .  ) when there are no fourth-order resonances we 
have stability. 

Suppose the parameters a and 13 belong to fourth-order resonance curves. In this case the non-linear 
normalizing change of variables q., p .  ~ x, y reduces the Hamiltonian (3.2) to the form 

H = Y2 ~'(x2 + y2 ) + Y4 c2 (x2 + y2 )2 + (xa, cos 4~.'c - ya, sin 4Xx)(x 4 - 

_.6x2y2 + y4 ) _ 4(y~ cos 4kx + x~ sin 4~,'C)xy(x 2 -- y2 ) + 06 (4.3) 

In (4.3) the coefficient c2 is the same as in (4.1) and the quantities x4o andy40 are constant. If l c2 1 > 
4(x240 + y2)1/2, the solution q = p = 0 of system (1.2) is stable, and if we have the opposite sign in the 
latter inequality, we have instability [12]. 

According to [12] for the Hamiltonian (3.2) we have 

2~ 2K 
X4t ) = 1 (Z! COS4~"C+~2 sin4~:Qdx, y~) = I(-Xl sin4~:c+~2 cos4~.~)d~ 

0 0 

1 
~,1 : :  384x (a+~c°sx)[(n21 +n2'2)2 _8n~n22] 

l 2 
Z2 ::-~'~(a+fScosX)nltnl2(n~l -n2z) 

(4.4) 

Using expressions (3.3) for nil  and n12 we can convert expressions (4.4) to the form 

1 ~ [41.tlv, _(g~ _ v~)2](a+~cos,c)d~ 
= 2rt 2 2 

X4o 384~:2 

1 2n 
y~, = 96ro:2 ~lx,v,(IX~ - v~)(a+ I]cosx)dx 

In view of the fact: that the integrand in the second of these equations is odd we have Y40 = 0. The 
expression for x40 can be converted if we use the fact that the functions Ixl(x) and va(x) are solutions 
of the Mathieu equation (2.2). We obtain 

- -  l 2~t . 

x,, 1z8  2 (4.5) 

When the equalityy40 = 0 is taken into account the condition for stability can be written in the form 
of the inequality I c2 1 > 4 1 x40 I. It follows from (4.2) and (4.5) that this condition is satisfied on all the 
fourth-order resonance curves. 

5. I N V E S T I G A T I O N  OF STABILITY F O R  VALUES OF THE 
P A R A M E T E R S  B E L O N G I N G  TO THE B O U N D A R Y  CURVES 

For boundary values of the parameters a and I], by using the non-linear normalizing transformation 
q., p .  -~ x, y, the Hamilton function (3.4) can be reduced to the form [13] 

n = 1/62c5y2 +a4x 4 +0," (5.1) 

where a 4 is a constant quantity. If a4~ > 0, the solution q = p = 0 of system (1.2) is stable, while if a4~ 
< 0, we have instabifity [13]. 

The normalizing canonical transformation of Hamiltonian (3.4) to the form (5.1) has a period of 2m 
with respect to x, where s = 1 in cases 1 and 2 and s = 2 in cases 3 and 4. The coefficient a4 in (5.1) 
can be calculated from the formula 
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I 2 7r.~' 

a4 = - ~ 4 8 n s  0 l( tx + ~ c ° s x ) n ( I d x  (5.2) 

The function nn(x) occurring here is defined by (3.9) and (3.12) in cases 1 and 2, and by similar 
equalities (see Section 3) in cases 3 and 4. Noting that this function is a solution of Mathieu equation 
(2.2), expression (5.2) can be converted to the form 

1 nt, nt, d'c 
a4 = - 16---~ 

Hence it follows that in all possible cases of the boundary curves considered in Section 3 the quantity 
a4 is negative. 

Taking into account the fact that 8 ffi 1 in cases 1 and 3 and 8 = -1 in cases 2 and 4 we obtain 
that, on the boundary curves T (°), T(2k), ~z~-l) (k = 1, 2 . . . .  ) the solution q = p = 0 of Eqs (1.2) 
is unstable, while on the boundary curves Tc (2k-1), T (2k), (k = 1, 2 . . . .  ) we have stability. 

The results of Sections 3-5 show that the theorem formulated in Section 2 is correct. Together with 
the known results of an investigation of instability in the first approximation presented in Section 2 it 
gives a comprehensive answer to the question of the Lyapunov stability of the normal and inverted 
positions of the pendulum for vertical harmonic oscillations of its point of suspension. 
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